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Abstract. We present a detailed next-to-leading order (NLO) leading twist QCD analysis of deeply virtual
Compton scattering (DVCS) observables, for several different input scenarios, in the MS scheme. We discuss
the size of the NLO effects and the behavior of the observables in skewedness ζ, momentum transfer, t, and
photon virtuality, q2 = −Q2. We present results on the amplitude level for unpolarized and longitudinally
polarized lepton probes, and unpolarized and longitudinally polarized proton targets. We make predictions
for various asymmetries and for the DVCS cross section and compare with the available data.

1 Introduction

In the quest for understanding the structure of hadrons,
hard, exclusive lepton-nucleon processes have emerged as
very promising candidates to further constrain the dy-
namical degrees of freedom of hadronic matter. Exper-
imentally, such processes are typified by a clear spatial
separation of the scattered final state nucleon and the
diffractively-produced, exclusive system, X, i.e. by the
presence of a large rapidity gap. The hard scale required
for a perturbative analysis is either provided by the space-
like virtuality, Q2 = −q2 � Λ2

QCD, of the exchanged
photon, a heavy quark mass, or by a large momentum
transfer to the hadron in the t-channel, t� 0. Deeply vir-
tual Compton scattering (DVCS) [1–13], γ∗(q) + p(P )→
γ(q′) + p(P ′), is the most promising1 of these processes.
One reason for this is that on the lepton level it inter-
feres with a competing QED process, known as the Bethe-
Heitler (BH) process, in which the final state photon is
radiated from either the initial or final state lepton. The
associated interference term offers the unique possibility
to directly measure both the imaginary and real parts of
QCD amplitudes, via various angular asymmetries. A fac-
torization theorem has been proven for the DVCS process
[6,7] which relates the experimentally-accessible ampli-
tudes to a new class of fundamental functions, called gen-
eralized parton distributions (GPDs) [1–3,15–17], which

a e-mail: andreas.freund@physik.uni-regensburg.de
b e-mail: martinmc@amtp.liv.ac.uk
1 The fact that the produced real photon is an elementary

quantum state eliminates the need for further non-perturbative
information, which is required for example in exclusive vector
meson production [14]. This simplifies the theoretical treat-
ment considerably

encode detailed information about the partonic structure
of hadrons.

GPDs are an extension of the well-known parton dis-
tribution functions (PDFs) appearing in inclusive pro-
cesses such as deep inelastic scattering (DIS), or Drell-
Yan, and encode additional information about the par-
tonic structure of hadrons, above and beyond that of con-
ventional PDFs. They are defined as the Fourier trans-
forms of non-local light-cone operators2 sandwiched be-
tween nucleon states of different momenta3, commensu-
rate with a finite momentum transfer in the t-channel
to the final state proton. As such, the GPDs depend on
four variables (X, ζ,Q2, t) rather than just two (X,Q2)
as is the case for regular PDFs. This allows an extended
mapping of the dynamical behavior of a nucleon in the
two extra variables, skewedness ζ, and momentum trans-
fer, t. In fact, knowledge of the behavior of the GPDs
in these two extra variables would allow one to obtain,
for the first time, a three dimensional map of the proton
in terms of its partonic constituents. The GPDs are true
two-particle correlation functions, whereas the PDFs are
effectively only one-particle distributions. They contain,
in addition to the usual PDF-type information residing
in the so-called “DGLAP region” [18] (for which the mo-
mentum fraction variable is larger than the skewedness
parameter, X > ζ), supplementary information about the
distribution amplitudes of virtual “meson-like” states in
the nucleon in the so-called “ERBL region” [19] (X < ζ).

A good knowledge of GPDs is required to establish the
boundary conditions for a large class of exclusive processes
calculable in QCD. Unfortunately, reliable perturbative
calculations can only be made if t is either small or large,

2 Compared to local operators in inclusive reactions
3 In inclusive reactions the momenta are the same
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confining a sensible comparison between theory and exper-
iment to restricted kinematical regions where either the t-
dependence is a purely nonperturbative function (small t,
large Q2) as in DVCS or the Q2-dependence is mainly non
perturbative (small Q2, large t) as in, for example, large-t
photoproduction of a real photon (wide angle DVCS) [20].
In light of this observation, one might question the practi-
cality of studying and measuring these exclusive distribu-
tions, given that inclusive PDFs may only be constrained
well via a global analysis of a large number of data points
from numerous experiments.

It turns out that the GPDs are rather more tightly con-
strained than one might naively assume [21]. Firstly, they
are obliged to reproduce the regular PDFs in the forward
limit ζ → 0 [1–3]. Secondly, they are each required to be ei-
ther symmetric or antisymmetric about the pointX = ζ/2
in the ERBL region, and they have to obey a polynomial-
ity constraint (see for example [22]). These are properties
which need to be preserved under evolution. Lastly, the
DVCS amplitudes, and thus certain observables, seem to
be very sensitive to the shape of the GPD in the small ζ re-
gion, especially the real part of DVCS amplitudes [23,24].
Hence, experimental measurements of DVCS observables,
even of only moderate statistics, appear to give a good op-
portunity to pin-down the GPDs, given these theoretical
restrictions. Therefore a careful, thorough and accurate
theoretical analysis of DVCS is necessary to understand
how varying the input GPDs affects the physical observ-
ables and the quantitative and qualitative changes in going
from leading order (LO) to next-to-leading order (NLO)
accuracy in perturbation theory. In this paper, we present
such a NLO analysis, in the MS-scheme, for both polar-
ized and unpolarized scattering, and explore some of the
necessary issues required to make an optimal extraction
of the GPDs from current and future data.

The physical picture emerging for DVCS is also very
interesting in its own right. Several important questions
immediately arise. What does the energy and Q2-depen-
dence of DVCS reveal about the nature of diffractive ex-
change and how does it compare to other diffractive pro-
cesses? Why does DVCS appear to have significant prob-
ability in the valance region at larger x, i.e. outside of the
region in which generic diffraction usually occurs? Is the
physical picture for DVCS the same in both regions? We
will attempt a partial answer to these questions in the
following.

This paper gives a comprehensive analysis of DVCS
observables at NLO accuracy. Complementary informa-
tion may be found in [21,23,24]. To bring our analysis
right up to date, we introduce unpolarized input GPDs
based on two of the most recent PDF sets, CTEQ5M [25]
and MRST99 [26] (in addition to GRV98 [27], and the
older MRSA’ [28] used in our earlier publications). This
allows us to push our input scale for skewed evolution
down to Q0 = 1 GeV. For the purposes of comparison we
also present the results for DVCS observables obtained
using our earlier input models. Various computer codes
used in our analysis our available from the HEPDATA
website [29].

This paper is structured as follows. In Sect. 2 we reiter-
ate the kinematics of DVCS and BH and define the DVCS
observables, i.e. various measurable angular asymmetries
and cross sections. In Sect. 3 we describe the various input
GPDs and present numerical results for the NLO evolution
[15,30] of the new sets. Section 4 discusses how the various
DVCS amplitudes are produced via convolution integrals
of GPDs with coefficient functions. We present the Q2

and ζ-dependence of the unpolarized amplitudes for the
new sets graphically. In Sect. 5 we give our predictions for
the DVCS observables in ζ, Q2 and t, for various polar-
izations of probe and target, as well as discussing their
implications. We compare our results with the currently
available data and with other theoretical predictions in
Sect. 6. Finally, we briefly conclude in Sect. 7.

2 Kinematics and observables
for DVCS and BH

2.1 Kinematics and frame definition

The lepton level process, e±(k, κ)N(P, S) → e±(k′, κ′)
N(P ′, S′) γ(q′, ε′), receives contributions from each of
the graphs shown in Fig. 1. The corresponding differen-
tial cross section is given by4:

dσDV CS+BH =
1

4k · P |T
±|2(2π)4

δ(4)(k + P − k′ − P ′ − q′)
d3k′

2k′0(2π)3

× d3P′

2P ′0(2π)3
d3q′

2q′0(2π)3
, (1)

where the square of the amplitude receives contributions
from pure DVCS (Fig. 1a), from pure BH (Figs. 1b, 1c)
and from their interference (with a sign governed by lepton
charge),

|T ±|2 =
∑

κ′,S′,ε′

[
|T ±DV CS |2

+(T ±∗DV CSTBH + T ±DV CST ∗BH) + |TBH |2
]
. (2)

The DVCS amplitude is given by

T ±DV CS = ±e
3

q2
ε

′∗
µ T

µν ū(k′)γνu(k)
{
+ for e+

− for e−
, (3)

where q = k − k′, ε
′∗
µ is the polarisation vector of the

outgoing real photon, and the hadronic tensor, Tµν , is de-
fined by a time ordered product of two electromagnetic
currents:

Tµν(q̄, P, P ′)

= i

∫
dxeix·q̄〈P ′, S′|Tjµ(x/2)jν(−x/2)|P, S〉 , (4)

4 In this section we follow closely the notation of [31]
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Fig. 1. a DVCS graph, b BH with photon from final state lepton and c with photon from initial state lepton

where q̄ = (q+q′)/2. This hadronic tensor contains twelve5
independent kinematical structures [32] for a spin-1/2 tar-
get. Here, we restrict ourselves to the twist-2 part of Tµν
and drop all other terms of either kinematical or dynami-
cal higher twist. From the structure of the operator prod-
uct expansion (OPE) one can immediately conclude that,
to twist-2 accuracy6, one has the following form factor
decomposition:

Tµν(q̄, P̄ ,∆) = −g̃µν q̄ · V1

2P̄ · q̄ − iε̃µνρσ
q̄ρAσ

1

2P̄ · q̄ , (5)

where P̄ = (P + P ′)/2 and the gauge invariant tensors
g̃µν = PµρgρσPσν and ε̃µναβ = PµρερσαβPσν are con-
structed through the projection tensor Pµν ≡ gµν − qµq′ν/
q · q′. The vector V µ

1 and axial-vector Aν
1 are expressed,

again to twist-2 accuracy, through the following form fac-
tor decomposition,

V1µ = Ū(P ′, S′)
(
H1γµ − E1 iσµν∆

ν

2M

)
U(P, S) , (6)

A1µ = Ū(P ′, S′)
(
H̃1γµγ5 − Ẽ1∆µγ5

2M

)
U(P, S) , (7)

where U, Ū are spinors for the incoming and outgoing
hadron state, ∆ = P − P ′ is the momentum transfered
from the hadron7 and M is the hadron mass. The various
Lorentz structures have associated amplitudes: H1, E1 are
unpolarized helicity non-flip and helicity flip amplitudes,
respectively, and H̃1, Ẽ1 are their polarized counterparts.
These amplitudes are expressed, via the DVCS factoriza-
tion theorem [6,7], as convolutions of a hard scattering

5 12 = 1
2 × 3 (virtual photon) ×2 (final photon) ×2 (initial

nucleon) ×2 (final nucleon). The reduction factor 1/2 is a result
of parity invariance

6 We drop a twist-2 contribution arising from a double helic-
ity flip of the photon, i.e. going from helicity +1 to helicity −1
or vice versa, which is suppressed in αs since this double flip
can only be mediated by gluons. Thus when we speak of twist-
2 contributions we really mean twist-2 modulo this double flip
contribution

7 Note that there is a relative minus sign between our def-
inition of ∆ and that of [31] (our definition is the same as r
in [22])

coefficient function and a GPD. They depend on the fol-
lowing Lorentz-invariant variables:

ξ =
Q2

2P̄ · q̄ , Q̄2 = −q̄2, t = ∆2 = (P − P ′)2 ,

which are related to the experimentally accessible vari-
ables, ζ ≡ xbj = −q2/(2P ·q) andQ2 = −q2, used through-
out this paper, via

Q̄2 =
1
2
Q2

(
1 +

t

Q2

)
≈ 1

2
Q2, and

ξ =
ζ
(
1 + t

2Q2

)
2− ζ

(
1− t

Q2

) ≈ ζ

2− ζ
. (8)

The BH amplitude is purely real and is given by the sum
of the graphs in Fig. 1b and Fig. 1c:

TBH = −e
3

t
ε

′∗
µ L

µνJν , (9)

with the leptonic tensor

Lµν = ū(k′, κ′)
[
γµ(�k + �∆)−1γν + γν(�k′ − �∆)−1γµ

]
×u(k, κ) , (10)

and the hadronic current

Jν = Ū(P ′, S′)
(
F1(t)γν − iF2(t)σντ

∆τ

2M

)
U(P, S) ,

(11)
where F1, F2 are the Dirac and Pauli form factors, respec-
tively, normalized such that F p

1 (0) = 1, F p
2 (0) ≡ κp =

−1.79, and Fn
1 (0) = 0, Fn

2 (0) ≡ κn = −1.91 for proton, p,
and neutron, n. These are known from low energy exclu-
sive scattering and have been parametrised, using dipole
formulas for small t, as linear combinations of the electric
and magnetic form factors:

F i
1 =

Gi
E(t) +

t
4M2G

i
M (t)

1 + t
4M2

, F i
2(t) =

Gi
M (t)−Gi

E(t)
1 + t

4M2

,

(12)
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with

Gp
E(t) =

Gp
M (t)

1 + κp
=

Gn
M (t)
κn

=
1(

1− t
m2

V

)2 , G
n
E(t) = 0 ,

(13)
and mV = 0.84 GeV [33].

Following [34], we chose to work in the γ∗P frame with
the proton at rest such that the direction of the four vec-
tor q = k − k′ (i.e. the virtual photon direction for the
DVCS graph) defines the negative z-axis8. Without loss
of generality we can choose the incoming electron to only
have a non-zero component along the positive x-axis in
the transverse (x−y) plane: k = (k0, k0 sin θe, 0, k0 cos θe),
q = (q0, 0,−|q3|), P = (M, 0, 0, 0) and P ′ = (P ′0, |P ′| cosφ
sin θH , |P ′| sinφ sin θH , |P ′| cos θH), where φ is the azi-
muthal angle between the lepton (x− z) and hadron scat-
tering planes. A dependence on the angle φ can be either
induced kinematically, or through the phase of hadronic
amplitudes as will be shown below. The spin vectors of
the nucleon target for longitudinal and transverse polar-
izations are given by

S±L =
Λ

Q
√
1 + Q2

4M2ζ2

(
q0 − Q2

2Mζ
, 0, 0,−|q3|)

)
,

ST = (0, cosΦ, sinΦ, 0) , (14)

where Λ = ±1. Note that t = (P −P ′)2 has a kinematical
minimum value which is given by

tmin = − M2x2
bj

1− xbj +
xbjM2

Q2

(
1 +O

(
M2

Q2

))
. (15)

The motivation for using this frame is that the frame-
dependent expressions for the s- and u-channel BH prop-
agators appearing in (10) (cf. Fig. 1b, 1c, respectively)
have a particularly simple Fourier expansion9 in the angle
φ. The dimensionless forms P1 = (k+∆)2

Q2 = t+2k·∆
Q2 and

P2 = (k−q′)2

Q2 = 1 − 2k·∆
Q2 are (up to corrections of order

O((−t/Q2), (M2/Q2))):

P1 =
1
y

1 + 2

√
(tmin − t)(1− x)(1− y)

Q2 cosφ

− t

Q2 (1− y − x(2− y))− 2
M2x2

Q2 (2− y)

 ,

P2 = −1
y

(1− y) + 2

√
(tmin − t)(1− x)(1− y)

Q2 cosφ

− t

Q2 (1− x(2− y))− 2
M2x2

Q2 (2− y)

 . (16)

8 This frame is related to the center-of-mass system of [4] by
a boost of the hadron in the z-direction

9 In [31] a different frame is used which induces a more com-
plicated φ-dependence than one finds in our frame

The product P1P2 appears in the BH and interference
expressions and thus induces an additional kinematical
(rather than hadronic) φ-dependence. In certain kinemat-
ical regions, this additional φ-dependence can fake certain
hadronic φ-dependences [34], it can also lead to unwanted
contributions in certain φ-asymmetries, as discussed be-
low. One way out of this dilemma is to weight DVCS
observables with P1P2, leaving only the pure hadronic
φ-dependence (exploiting the orthogonality of cosφ and
cosm′φ for integer m′ �= 1). We will not do this here be-
cause such a weighting requires a good φ resolution not
available for the present data and also because the pure
twist-2 contributions may well explain most of the ob-
served data without needing to take twist-3 or higher con-
tributions into account. Nevertheless, studying weighted
DVCS observables should be done as soon as good exper-
imental φ-resolution is available.

2.2 DVCS observables: differential cross section
and asymmetries

After performing the phase space integration in (1), the
triple differential cross section on the lepton level is given
by

dσ(3)(e±p→ e±γp)
dxbjdQ2d|t|

=
∫ 2π

0
dφ

dσ(4)

dxbjdQ2d|t|dφ (17)

=
α3
e.m.xbjy

2

8πQ4

(
1 +

4M2x2
bj

Q2

)−1/2 ∫ 2π

0
dφ|T ±|2 .

The twist two expressions for the DVCS squared, inter-
ference and BH squared terms, for all probe and target
polarizations, required for (17) are very similar to (24-
32) of [31] but with the full expressions for the BH prop-
agators of (16) included to reinstate the correct y- and
φ-dependence (a correction factor of −(1 − y)/(y2P1P2)
should be applied to (27-32) of [31]).

From the pure DVCS piece (following the usual single
photon exchange flux factor convention adopted in [35]),
changing variable from xbj to y and integrating over t, one
may define the virtual-photon proton cross section via

dσ(2)(e±p→ e±γp)
dydQ2 =

αe.m.(1 + (1− y)2)
2πQ2y

σ(γ∗P → γP ) .

(18)
We give predictions for σ(γ∗P → γP ) and compare with
the recent experimental data from the H1 Collab. [10] in
Sect. 6.

We will now define various DVCS observables, in terms
of a list of asymmetries in the azimuthal angle φ:
– The (unpolarized) azimuthal angle asymmetry (AAA),
measured in the scattering of an unpolarized probe on
an unpolarized target, is defined by

AAA =

{(∫ π/2

−π/2
dφ(dσDV CS+BH − dσBH)



A. Freund, M. McDermott: A detailed next-to-leading order QCD analysis 655

−
∫ 3π/2

π/2
dφ(dσDV CS+BH − dσBH)

)/
(∫ 2π

0
dφdσDV CS+BH

)}
, (19)

where dσBH is the pure BH term.
– The single spin asymmetry (SSA), measured in the
scattering of a longitudinally polarized probe on an
unpolarized target, is defined by

SSA =

∫ π
0 dφ∆σDV CS+BH − ∫ 2π

π
dφ∆σDV CS+BH∫ 2π

0 dφ(dσDV CS+BH,↑ + dσDV CS+BH,↓)
,

(20)
where ∆σ = dσ↑ − dσ↓ and ↑ and ↓ signify that the
lepton is polarized along or against its direction, re-
spectively.

– The asymmetry of an unpolarized probe on a longitu-
dinally polarized target (UPLT) is given by:

UPLT =

∫ π
0 dφ∆σDV CS+BH

LT − ∫ 2π
π

dφ∆σDV CS+BH
LT∫ 2π

0 dφ(dσDV CS+BH
↑ + dσDV CS+BH

↓ )
,

(21)
where ∆σLT = dσ↑ − dσ↓ with ↑ and ↓ signifying
that the target is polarized along or against the +z-
direction, respectively, corresponding to Λ = ∓1 in
(14).

– The asymmetry of an unpolarized probe on a trans-
versely polarized target (UPTT) is given by:

UPTT =

∫ π
0 dφ∆σDV CS+BH

TT − ∫ 2π
π

dφ∆σDV CS+BH
TT∫ 2π

0 dφ(dσDV CS+BH→ + dσDV CS+BH← )
,

(22)
where ∆σTT = dσ→−dσ← with→ and← signify that
the target transverse polarization vector, ST , points
along the +x and −x directions (i.e. Φ = 0, π), respec-
tively.

– The charge asymmetry (CA) in the scattering of an
unpolarized probe on an unpolarized target:

CA =

{(∫ π/2

−π/2
dφ∆dCσDV CS+BH

−
∫ 3π/2

π/2
dφ∆dCσDV CS+BH

)/
(23)(∫ 2π

0
dφ(d+σDV CS+BH + d−σDV CS+BH)

)}
,

where ∆dCσ = d+σ − d−σ corresponds to the differ-
ence of the scattering with a positron probe and an
electron probe.

– The charge asymmetry with a double spin flip of a
longitudinally polarized probe on a longitudinally po-
larized target (CADSFL):

CADSFL

=

{(∫ π/2

−π/2
dφ∆dCσDV CS+BH,LP

LT

−
∫ 3π/2

π/2
dφ∆dCσDV CS+BH,LP

LT

)/
(24)(∫ 2π

0
dφ(d+σDV CS+BH

↑ + d−σDV CS+BH
↓ )

)}
,

where ∆dCσLPLT = d+σ↑↑ − d−σ↓↓ − ∆dCσ with d+σ↑↑
corresponding to a positron beam polarized along its
own direction scattering with a target with its polar-
ization vector having a positive z-component, d−σ↓↓
corresponds to an electron beam polarized against its
own direction scattering on target with its polarization
vector having a negative z-component and with ∆dCσ
having the same meaning as for CA.

– The charge asymmetry with a double spin flip of a
longitudinally polarized probe on a transversally po-
larized target (CADSFT):

CADSFT

=

{(∫ π/2

−π/2
dφ∆dCσDV CS+BH,LP

TT

−
∫ 3π/2

π/2
dφ∆dCσDV CS+BH,LP

TT

)/
(25)(∫ 2π

0
dφ(d+σDV CS+BH

→ + d−σDV CS+BH
← )

)}
,

where ∆dCσLPTT = d+σ↑→− d−σ↓←−∆dCσ, with d+σ↑→
corresponding to a positron beam polarized along its
own direction scattering on a target with a polariza-
tion vector pointing in the +x direction, d−σ↓← corre-
sponds to an electron beam polarized against its own
direction scattering on a target with a polarization vec-
tor pointing in the −x direction, and ∆dCσ having the
same meaning as in CA.

The definitions above make the asymmetries directly
proportional to the real part of a combination of DVCS
amplitudes, in the case of the AAA, CA, CADSFT and
CADSFL, and to the imaginary part of a combination of
DVCS amplitudes for SSA, UPTT and UPLT. If one forms
the proper combinations from (24-32) of [31], with the
correction factor included, one observes that for small-x
DVCS observables the information from transversally po-
larized targets is redundant to the information from lon-
gitudinally polarized targets as far as the information on
the real and imaginary part of DVCS amplitudes is con-
cerned. For large x, this is, strictly speaking, no longer
true! However, higher twist corrections, especially in the
normalization of the asymmetries, will make extraction of
information on individual amplitudes at large x virtually
impossible. For this reason we will focus only on DVCS ob-
servables which may be obtained using an unpolarized or
longitudinally polarized target. Note that for small x and
t, these combinations of amplitudes reduce to just the un-
polarized (for AAA, CA and SSA) or polarized (for UPLT
and CADSFL) helicity non-flip amplitudes [31]. Note also
that the definition of the AAA is different from the usual
one (see e.g. the first reference of [8]) and is designed to
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ensure that the numerator contains only the interference
term and is thus directly proportional to a DVCS ampli-
tude. This slight change was necessary since, on inspec-
tion, it was realised that the pure BH contribution to the
numerator does not vanish when the φ integrations in the
numerator of (19) are carried out (due to the correction
factor, ∝ 1/P1P2, applied to (27) of [31]). Hence the BH
contribution needs to be subtracted from the differential
cross section in order to have an asymmetry which is di-
rectly proportional to the real part of a hadronic DVCS
amplitude.

Note that in the following we will always assume a
positron probe, except in the case of charge asymmetries
where one needs both positron and electron. Thus for the
corresponding electron observables the overall sign in the
results we will quote below has to be reversed.

At this point, we wish to make a few general com-
ments on the φ-behavior of the lepton level expressions
given in (30-32) of [31] (modified by the propagator fac-
tors). Firstly, one can cleanly separate the real and imag-
inary parts of DVCS amplitudes using their different φ
behavior either by taking moments with respect to a func-
tion in φ (usually either sine or cosine) thereby project-
ing out the unwanted contributions, or, equivalently, by
forming asymmetries in the angle φ, as we did above. Sec-
ondly, as was observed in [4,34], the φ-dependence of the
expressions also allows a clean separation into different
twist contributions. For example (see [34]), the real and
imaginary parts of twist-2 can be separated from one an-
other by using φ-moments, since the real and imaginary
parts of twist-3 amplitudes have a φ-dependence which
is very different from that of twist-2: e.g. cosφ (twist-2)
and cos 2φ (twist-3) [4,34]. Thus DVCS allows the real
and imaginary parts of hadronic twist-2 and twist-3 am-
plitudes to be isolated for the first time within the same
experiment, simply by using different moments or asym-
metries in the azimuthal angle φ. Therefore, experimental
upgrades which enhance the instrumentation in the for-
ward region (see e.g. [36] for a H1 Collaboration proposal)
are vital to maximise the physics scope of these experi-
ments. We note the asymmetries as defined above do not
necessarily require a good resolution in the angle φ, it is
sufficient to specify which hemisphere in φ a given event
corresponds to. A reasonable sample of events will then
be sufficient to measure the asymmetries. If one wishes to
produce asymmetries weighted for example with a sine or
cosine, then a good phi resolution is of course required.
This concludes our comments on DVCS/BH kinematics
and DVCS observables.

3 GPDs and input models

3.1 Symmetries and representations of GPDs

For the definition of our input GPDs we follow precisely
the prescription given in [21]. GPDs result from matrix
elements for quark and gluon correlators of unequal mo-
mentum nucleon states and may be defined in a num-
ber of ways. Following [2,3], we initially chose a defini-

tion which treated the initial and final state nucleon mo-
mentum (P, P ′, respectively) symmetrically by involving
parton light-cone fractions with respect to the momen-
tum transfer, ∆ = P − P ′, and the average momentum,
P̄ = (P + P ′)/2. The inherent symmetries of the matrix
elements are clearly manifest in associated symmetries of
the GPDs. We then shifted to a definition [37] based on
light-cone fractions of the incoming hadron, for the pur-
poses of evolution and a direct comparison with conven-
tional PDFs and with experiment. We discussed the man-
ifestation of the symmetries in this representation and ex-
plicitly illustrated their preservation under evolution.

Matrix elements of non-local operators are defined on
the light cone and involve a light-like vector zµ (z2 = 0).
They can be most generally represented by a double spec-
tral representation with respect to P̄ · z and ∆ · z [1,2,22]
(see (4) of [21]). In accordance with the associated Lorentz
structures, the non-singlet, singlet and gluon matrix ele-
ments involve functions corresponding to proton helicity
conservation (labelled with F ) and to proton helicity flip
(labelled with K) which are collectively known as double
distributions. Henceforth, for brevity, we shall only discuss
the helicity non-flip parts explicitly. However, the helicity
flip case is exactly analogous. The D-terms in (4) of [21]
correspond to resonance-like exchange [22,38] and permit
non-zero values for the singlet and gluon matrix elements
in the limit P̄ · z → 0 and ∆ · z �= 0, which is allowed by
their evenness in P̄ · z.

By making a particular choice of the light-cone vec-
tor, zµ, as a light-ray vector (so that in light-cone vari-
ables, z± = z0±z3, only its minus component is non-zero:
zµ = (0, z−,40)) one may reduce the double spectral repre-
sentation of (4) of [21], defined on the entire light-cone, to
a one dimensional spectral representation, defined along
a light ray, depending on the skewedness parameter, ξ,
defined by

ξ = ∆ · z/2P̄ · z = ∆+/2P̄+ , (26)

which is equivalent to our definition in Sect. 2 (cf. (8)).
The resultant GPDs are the off-forward parton distribu-
tion functions (OFPDFs) introduced in [1,3]:

H(v, ξ, t) =
∫ 1

−1
dx′

∫ 1−|x′|

−1+|x′|
dy′δ(x′ + ξy′ − v)F (x′, y′, t) ,

(27)
where v ∈ [−1, 1]. In terms of individual flavor decomposi-
tions, the singlet, non-singlet and gluon distributions are
given through

HS(v, ξ) =
∑
a

Hq,a(v, ξ)∓Hq,a(−v, ξ) ,

HNS,a(v, ξ) = Hq,a(v, ξ)±Hq,a(−v, ξ) ,
HG(v, ξ) = Hg(v, ξ)±Hg(−v, ξ) , (28)

where the upper (lower) signs corresponds to the unpo-
larized (polarized) case. Note that the symmetries which
hold for the matrix elements can change for the His, due
to the influence of the P̄ · z, ẑ factors in (4) of [21]. In
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particular, the unpolarized quark singlet is antisymmetric
about v = 0, as are both D-terms, whereas the unpolar-
ized quark non-singlet and the gluon are symmetric. The
opposite symmetries hold for the polarized distributions.
The helicity flip GPDs, are found analogously (double in-
tegrals with respect to the Ks) and similar reasoning es-
tablishes their symmetry properties.

As in [21], we shall make the usual assumption that the
t-dependence of all of these functions factorizes into im-
plicit form factors. One should bear in mind that in order
to make predictions for physical amplitudes (for t �= 0)
these form factors must be specified. Note that the as-
sumption of a factorized t-dependence, as a general state-
ment, must be justified within the kinematic regime con-
cerned. It appears to be valid at small x and small t, from
the HERA data on a variety of diffractive measurements.
However, it appears not to hold for moderate to large t
and larger x [39].

For the purposes of comparing to experiment it is nat-
ural to define GPDs in terms of momentum fractions,
X ∈ [0, 1], of the incoming proton momentum, P , carried
by the outgoing parton. To this end we adapt the nota-
tion and definitions of [37] introducing two non-diagonal
parton distribution functions (NDPDFs), Fq and F q̄, for
flavor, a:

Fq,a
(
X1 =

v1 + ξ

1 + ξ
, ζ

)
=

Hq,a(v1, ξ)
(1− ζ/2)

,

F q̄,a
(
X2 =

ξ − v2

1 + ξ
, ζ

)
= −H

q,a(v2, ξ)
(1− ζ/2)

, (29)

where v1 ∈ [−ξ, 1], v2 ∈ [−1, ξ] (see Fig. 4 of [37]), ζ ≡
∆+/P+ is the skewedness defined on the domain ζ ∈ [0, 1]
such that ξ ≈ ζ/(2−ζ) and ζ = xbj for DVCS (this defini-
tion is equivalent and the relations are the same as those
in Sect. 2). The transformations between the v1, v2 and
X1, X2 are given implicitly in (29), the inverse transfor-
mations are:

v1 =
X1 − ζ/2
1− ζ/2

, v2 =
ζ/2−X2

1− ζ/2
. (30)

For the gluon one may use either transformation, e.g.

Fg(X, ζ) = Hg(v1, ξ)
(1− ζ/2)

. (31)

There are two distinct kinematic regions for the GPDs,
with different physical interpretations. In the DGLAP [18]
region, X > ζ (|v| > ξ), Fq(X, ζ) and F q̄(X, ζ) are inde-
pendent functions, corresponding to quark or anti-quark
fields leaving the nucleon with momentum fraction X and
returning with positive momentum fractionX−ζ. As such
they correspond to a generalization of regular DGLAP
PDFs (which have equal outgoing and returning fractions).
In the ERBL [19] region, X < ζ (|v| < ξ), both quark and
anti-quark carry positive momentum fractions (X, ζ −X)
away from the nucleon in a meson-like configuration, and
the GPDs behave like ERBL [19] distributional ampli-
tudes characterising mesons. This implies that Fq and F q̄

are not independent in the ERBL region and indeed a
symmetry is observed: Fq(ζ − X, ζ) = F q̄(X, ζ) (which
directly reflects the symmetry of Hq(v, ξ) about v = 0).
Similarly, the gluon distribution, Fg, is DGLAP-like for
X > ζ and ERBL-like for X < ζ. This leads to un-
polarized non-singlet, FNS,a = Fq,a − F q̄,a, and gluon
GPDs which are symmetric, and a singlet quark distribu-
tion FS =

∑
a Fq,a +F q̄,a which is antisymmetric, about

the point X = ζ/2 in the ERBL region. Again the oppo-
site symmetries hold for the polarized distributions.

3.2 GPD input models

For our input models we we follow precisely the procedure
given in Sect. III of [21] which is based on Radyushkin’s
ansatz [40] for GPDs. Here we briefly describe some salient
features which are required for the discussion and give
various technical details not included in [21]. The input
distributions, Fq,q̄,g(X, ζ,Q0), at the input scale, Q0, have
the correct symmetries and properties and are built from
conventional PDFs in the DGLAP region, for both the
unpolarized and polarized cases. These input NDPDFs
then serve as the boundary conditions for our numerical
evolution.

Factoring out the overall t-dependence we have the fol-
lowing integral relations between the double distributions
and NDPDFs for the quark and antiquark:

Fq,a(X, ζ) = Hq,a(v1, ξ)
1− ζ/2

=
∫ 1

−1
dx′

∫ 1−|x′|

−1+|x′|
dy′δ (x′ + ξy′ − v1)

×F
q,a(x′, y′)
(1− ζ/2)

,

F q̄,a(X, ζ) = −H
q,a(v2, ξ)
1− ζ/2

=
∫ 1

−1
dx′

∫ 1−|x′|

−1+|x′|
dy′δ (x′ + ξy′ − v2)

×F
q,a(x′, y′)
(1− ζ/2)

. (32)

with 1 > v1 > −ξ, −1 < v2 < ξ and a similar relation for
the gluon (for which one can use either v1 or v2).

Following [31,40] we employ a factorized ansatz for the
double distribution where they are given by a product of a
profile function, πi, and a conventional PDF, f i, (i = q, g).
The profile functions are chosen to guarantee the cor-
rect symmetry properties in the ERBL region and their
normalization is specified by demanding that the conven-
tional distributions are reproduced in the forward limit:
e.g. Fg(X, ζ → 0)→ fg(X). The exact t-dependence will
be specified in Sect. 4, since it depends on whether one is
dealing with helicity-flip or helicity non-flip amplitudes,
unpolarized or polarized in origin.

In [21] we specified two particular forward input distri-
butions for the GPDs by using two consistent sets of inclu-
sive unpolarized and polarized PDFs, i.e. GRV98 [27] and
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GRSV0010 [41] with Λ
(4,NLO)
QCD = 246 MeV, and MRSA’

[28] and GS(gluon ‘A’) [42] with Λ
(4,NLO)
QCD = 231 MeV

at the common input scale Q2
0 = 4 GeV2 and Λ

(4,LO)
QCD =

174 MeV for both sets. These pairs of unpolarized and po-
larized sets were consistent in the sense that the unpolar-
ized PDFs were used to constrain the respective polarized
PDFs and both use the same choices for ΛQCD, etc in the
evolution.

In order to bring our analysis more up-to-date11 and
to further investigate the input model dependence, we re-
lax our (rather weak) consistency requirement in this pa-
per and use two additional contemporaryMS-scheme un-
polarized sets. We use CTEQ5M [25] and MRST99 [26]
in conjunction with the GRSV0012 polarized set at the
common input scale of Q2

0 = 1 GeV2 (with Λ
(4,NLO)
QCD =

326 MeV for CTEQ5M13, and Λ
(4,NLO)
QCD = 300 MeV for

MRST99). For the LO evolution of these sets, we have for
both models Λ(4,LO)

QCD = 192 MeV.
Having defined this particular input model for the dou-

ble distribution one may then perform the y′-integration
in (32) using the delta function. This modifies the limits
on the x′ integration according to the region concerned:
for the DGLAP region X > ζ one has:

Fq,a(X, ζ) = 2
ζ

∫ v1+ξ
1+ξ

v1−ξ
1−ξ

dx′πq
(
x′,

v1 − x′

ξ

)
qa(x′) . (33)

For the anti-quark, since v2 = −v1 one may use (29,32)
with v2 → −v1, and, exploiting the fact that fq(x) =
−q̄(|x|) for x < 0, one arrives at

F q̄,a(X, ζ) = 2
ζ

∫ −v1+ξ
1−ξ

−v1−ξ
1+ξ

dx′πq
(
x′,
−v1 − x′

ξ

)
q̄a(|x′|).

(34)
In the ERBL region (X < ζ, |v| < ξ) integration over y′
leads to:

Fq,a(X, ζ) = 2
ζ

[∫ v1+ξ
1+ξ

0
dx′πq

(
x′,

v1 − x′

ξ

)
qa(x′)

−
∫ 0

−(ξ−v1)
1+ξ

dx′πq
(
x′,

v1 − x′

ξ

)
q̄a(|x′|)

]
,

(35)

F q̄,a(X, ζ) = −2
ζ

[∫ ξ−v1
1+ξ

0
dx′πq

(
x′,
−v1 − x′

ξ

)
qa(x′)

10 The “standard” scenario with an unbroken flavor sea
11 In particular the MRSA’/GS(A) set from 1995 is based on
rather old data
12 The “valence” or broken flavor sea scenario
13 We use the FORTRAN code supplied by Pumplin [43] at
the input scale of Q0 = 1GeV, to feed into our double distribu-
tion code. Despite the fact that this code is not recommended
for use at such a low scale we found that the results matched
very smoothly onto the results at higher scales

−
∫ 0

−(ξ+v1)
1+ξ

dx′πq
(
x′,
−v1 − x′

ξ

)
q̄a(|x′|)

]
.

(36)

The non-singlet (valence) and singlet quark combinations
are given by:

FNS,a ≡ Fq,a + F q̄,a

≡ [Hq,a(v1, ξ)−Hq,a(−v1, ξ)]
1− ζ/2

, (37)

FS ≡
∑
a

Fq,a −F q̄,a

≡
∑
a

[Hq,a(v1, ξ) +Hq,a(−v1, ξ)]
1− ζ/2

. (38)

We implemented (37,38) using (33,34) and (35,36) for
the DGLAP and ERBL regions respectively, employing
an adaptive Gaussian numerical integration routine on a
non-equidistant grid14. We comment further on our usage
of grids and integration routines below.

The integration ranges in (33,34) and (35,36) sample
the input PDFs all the way down to zero in x′. Gener-
ally speaking, the providers of PDF sets issue programs
that only allow their PDFs to be called for x′ greater than
some minimum value. This is partly for technical reasons
but also partly because the PDFs have not yet been well
constrained by inclusive data in the very small x region,
which corresponds to very high centre-of-mass energies.
For the implementation of MRST, MRSA’ and GS we are
fortunate to have access to analytic forms themselves at
the input scale15 and we simply extrapolate these into the
very small x region. For GRV98 and GRSV00 this is not
the case and it was necessary to perform fits, at the Q0-
scale concerned, to the small x behavior of these sets for
values of x where they are available and then extrapolate
these fits into the very small x regime16. In investigating
this issue we noticed that if PDFs (and the quarks in par-
ticular) were too singular the integrals for the individual q
and q̄ were divergent (although this divergence is cancelled
in forming the singlet, some regulation of the limit x′ → 0
was required). This issue is not merely of technical inter-
est. The physics message is clear: the GPDs defined above,
using Radyushkin’s ansatz [40], and hence the DVCS ob-
servables are very sensitive to the behavior of the PDFs
in the small x region and also to their extrapolation to
extremely small x. To the best of our knowledge this has
not been explicitly pointed out before.

The unpolarized singlet also includes the D-term on
the right hand side of (38) (in principle there is also an
analogous term in the unpolarized gluon (DG in (4) of
14 This uses up most of the computing time for an evolution
run
15 For CTEQ5M we use Pumplin’s code [43]
16 Having tried several forms we eventually settled on fits of
the type f(x) = f(x1) (x/x1)a (1 + b log(x/x1) + c (x − x1)),
with x1 being the minimum value of x available and with the
power a constrained to be greater than zero to allow conver-
gence as x → 0
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[21]), but we choose to set it to zero, since nothing is
known for the gluon D-term except its symmetry.). We
adapt the model introduced in [38] for the unpolarized
singlet D-term, which is based on the chiral-quark-soliton
model. This D-term is antisymmetric in its argument, i.
e. about the point X = ζ/2 (in keeping with the anti-
symmetry of FS , and HS about v = 0). It is non-zero
only in the ERBL region and hence vanishes entirely in
the forward limit. In practice it only assumes numerical
significance for large ζ (see Fig. 6 of [21]).

3.3 GPD evolution

The input GPDs must now be evolved in Q2, using renor-
malization group equations, in order to make predictions
for DVCS amplitudes at evolved scales. The input GPDs,
as previously defined, are continuous functions which span
the DGLAP and ERBL regions, and evolve in scale appro-
priately according to generalised versions of the DGLAP
or ERBL evolution equations. Note that the evolution in
the ERBL region depends on the DGLAP region, i.e. there
is a convolution integral in the ERBL equations span-
ning the DGLAP region [ζ, 1], whereas the DGLAP evo-
lution is independent of the ERBL region. As the scale
increases, partons are pushed from the DGLAP into the
ERBL region simply through momentum degradation, but
not vice versa. The ERBL region thus acts as a sink for
the partons. Hence, in the asymptotic limit of infinite Q2,
we recover the simple asymptotic pion-type distribution
amplitude in the ERBL region and a completely empty
DGLAP region. This will have strong implications for the
DVCS amplitudes and cross section. Note that in per-
forming the evolution we assumed that the t-dependences
of the quarks and gluons (which mix under evolution) are
the same and factorize such that they do not influence
the degree of mixing under evolution. Otherwise, any as-
sumed t-dependence will be modified by the QCD evolu-
tion, complicating calculations. In fact the t-dependence
of quarks and gluons should be different, however, since
we study DVCS only at small t, the differences in their
t-dependence should be small. This unresolved problem of
t-dependence mixing will be addressed in another paper.

The renormalization group equations (RGEs), or evo-
lution equations, for the DGLAP region and ERBL re-
gions, involve convolutions of GPDs with generalised ker-
nels. They are implemented in a FORTRAN numerical
evolution code. In the DGLAP region the quark flavor
singlet and the gluon distributions mix under evolution
according to generalized DGLAP kernels17 taken from

17 Note that in the second reference of [15] there was a typo-
graphical error in (188) where the overall sign of the polarized
pure singlet term in the QQ sector should be − so as to be
consistent with (178). In another typographical error, the fac-
tor 3 in the first term of the square bracket in the second line
of (194) of the same reference, i.e. the equation for the unpo-
larized GQ kernel, should be replaced by 3ζ. These mistakes
were properly corrected in the implementation of the kernels
in the GPD evolution code

[15]. The flavor non-singlet (NS) quark combinations do
not mix under evolution. Note that in order to do the
full evolution and afterwards extract the various quark
species separately one needs to solve two separate evolu-
tion equations. One for a symmetric combination qa+ =
qa + q̄a − 1/Nf

∑
a(q

a + q̄a) and one for an antisymmet-
ric combination qa− = qa − q̄a. A single quark species, i.e.
quark or anti-quark in the DGLAP region, or just a singlet
or non-singlet quark combination in the ERBL region, can
be extracted the following way:(

qa

q̄a

)
=

1
2
(qa+ ± qa− + qS) , with

qS =
1
NF

∑
a

(qa + q̄a) , (39)

in the DGLAP region and

qS,a = (qa+ + qS) , and qNS,a = qa− , (40)

in the ERBL region. This procedure was adopted in our
FORTRAN code.

A numerical implementation of the convolution inte-
grals of the RNG equations involves specifying a treatment
of the integrable endpoint singularities. This is achieved
via the following definition of the +-distributions (in this
case we chose to apply it to the “whole kernel”) in the
DGLAP region:∫ 1

y

dz

z
P

(
y

z
,
ζ

z

)
+
F(z, ζ)

=
∫ 1

y

dz

z
P

(
y

z
,
ζ

z

)
(F(z, ζ)−F(ζ, ζ))−F(ζ, ζ)

×
[∫ 1

ζ
y

dzP

(
z,
ζ

y

)
−

∫ 1

y

dzP

(
z, z

ζ

y

)]
, (41)

and accordingly implemented in our code. Note that the
lower limit of the first integral in the last bracket is ζ/y,
which is not necessarily a grid point. Since we initially
used an equidistant grid in the integration variable18, we
needed to resort to a slower integration routine for a non-
equidistant grid such as an adaptive Gaussian integration
routine.

In the ERBL region, the quark singlet and gluon again
mix under evolution. The generalized ERBL kernels may
also be found in [15]. The +-distribution, again applied to

18 Our method of integration is the following: we first in-
troduce an equidistant grid which we then stretch both in
the ERBL and DGLAP regions with particular transforma-
tion functions in order to be able to treat the important region
around ζ and 0 more accurately. We then compute the Jaco-
bian of this transformation for the inverse transformation we
need. On the non-equidistant grid we compute the input dis-
tributions and then the kernels. Using the Jacobian we trans-
form back onto the equidistant grid and perform the convolu-
tion integrals using an equidistant grid integration routine like
a semi-open Simpson to account for the remaining integrable
singularities at y and ζ
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the whole kernel, takes the following form in the ERBL
region:∫ 1

y

dzV

(
y

ζ
,
z

ζ

)
+
F(z, ζ)

=
∫ 1

y

dzV

(
y

ζ
,
z

ζ

)
[F(z, ζ)−F(ζ, ζ)]

+F(ζ, ζ)
[∫ ζ

y

dz

(
V

(
y

ζ
,
z

ζ

)
− V

(
z

ζ
,
y

ζ

))

+
∫ 1

ζ

dzV

(
y

ζ
,
z

ζ

)]
,∫ y

0
dzV

(
y

ζ
,
z

ζ

)
+
F(z, ζ)

=
∫ y

0
dzV

(
y

ζ
,
z

ζ

)
[F(z, ζ)−F(ζ, ζ)]

+F(ζ, ζ)
∫ y

0
dz

(
V

(
y

ζ
,
z

ζ

)
− V

(
z

ζ
,
y

ζ

))
, (42)

where the terms have been arranged in such away that
all divergences explicitly cancel in each term separately
and only integrable divergences, as in the case of forward
evolution at the point y = xbj , remain. The bar nota-
tion means, for example, z/ζ = 1 − z/ζ. In the code, the
integrations were dealt with in an analogous way to the
DGLAP region. Note that for the solution of the differ-
ential equation in Q2, we adopted the CTEQ-routines,
which are based on a Runge-Kutta predictor-corrector al-
gorithm.

In Fig. 2 we plot the input distributions for the “new”
unpolarized inputs (CTEQ5M and MRST99) at their in-
put scale, and at an evolved scale to demonstrate the evo-
lution effects in NLO.

4 DVCS amplitudes

4.1 Convolution formulae

In [24] we investigated unpolarised and polarised DVCS
amplitudes in detail. For convenience in the following
equations we introduce the notation V for the unpolar-
ized case and A for the polarized case, where applicable,
they take the upper and lower signs, respectively19. The
factorization theorem [6,7] for DVCS proves that the am-
plitude takes the following factorized form in the non-
diagonal representation (up to power-suppressed correc-
tions of O(1/Q)):
T S,V/ADV CS (ζ, µ

2, Q2, t)

=
∑
a

e2a

(
2− ζ

ζ

)[∫ 1

0
dX

TS(a),V/A
(
2X
ζ
− 1 + iε,

Q2

µ2

)
FS(a),V/A(X, ζ, µ2, t)

19 Refering to vector and axial-vector currents for the quarks
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Fig. 2. Unpolarized NLO input and evolved singlet quark and
gluon GPDs at small and large skewedness. The solid curves
are the input MRST99 GPDs at Q0 = 1 GeV, the dotted ones
show them evolved to Q = 10 GeV. The dashed curves are
input CTEQ5M GPDs at Q0 = 1 GeV and the dashed-dotted
ones show them evolved to Q = 10 GeV. The quark singlet
is scaled by a factor of 10−4 at ζ = 0.0001 and by 10−2 at
ζ = 0.1. For ζ = 0.1 the symmetry of the gluon GPD and the
anti-symmetry of the singlet quark GPD are apparent about
the point X = ζ/2 = 0.05

∓
∫ 1

ζ

dX TS(a),V/A
(
1− 2X

ζ
,
Q2

µ2

)
× FS(a),V/A(X, ζ, µ2, t)

]
,

T g,V/ADV CS(ζ, µ
2, Q2, t)

=
1
Nf

(
2− ζ

ζ

)2 [∫ 1

0
dX

T g,V/A
(
2X
ζ
− 1 + iε,

Q2

µ2

)
Fg,V/A(X, ζ, µ2, t)

±
∫ 1

ζ

dX T g,V/A
(
1− 2X

ζ
,
Q2

µ2

)
×Fg,V/A(X, ζ, µ2, t)

]
. (43)

Note that the second integral is purely real and does not
need a +iε prescription since there is no divergence of the
coefficient function in the integration interval. Also note
the opposite sign structure in the quark singlet and gluon
case due to opposite symmetries of the quark singlet and
gluon. For our numerical calculations, we set the factor-
ization scale, µ2, equal to the photon virtuality, Q2 (in [24]
we studied the effects of its variation and found them to
be rather mild; the associated uncertainties are less than
those due to differences in the input model GPDs so we
neglect them). Henceforth, we suppress the factorized t-
dependence and give predictions for t = 0. We will specify
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Fig. 3. The Q2-dependence of the real and imaginary parts of
the quark singlet DVCS amplitude. The solid (dashed) curve
is the real part in LO (NLO) and the dotted (dashed-dotted)
curve is the imaginary part in LO (NLO)

it for each case later. The LO and NLO coefficient func-
tions, T i,V/A, are taken from (14-17) of [44] and are sum-
marized in appendix A of [24]. They contain logarithms of
the type log(1−X/ζ)n/(1−X/ζ)n1 , with n, n1 = 0, 1, 2, 3.
Hence, depending on the region of integration, they can
have both real and imaginary parts (i.e. if the argument
of the log is positive or negative), which in turn generate
real and imaginary parts of the DVCS amplitudes.

In (43), we employ the +iε prescription through the
Cauchy principal value prescription (“P.V.”) which we im-
plemented through the following algorithm:

P.V.

∫ 1

0
dX T

(
2X
ζ
− 1

)
F(X, ζ,Q2)

=
∫ ζ

0
dX T

(
2X
ζ
− 1

)(F(X, ζ,Q2)−F(ζ, ζ,Q2)
)

+
∫ 1

ζ

dX T

(
2X
ζ
− 1

)(F(X, ζ,Q2)−F(ζ, ζ,Q2)
)

+F(ζ, ζ,Q2)
∫ 1

0
dX T

(
2X
ζ
− 1

)
. (44)

Each term in (44) is now either separately finite or only
contains an integrable logarithmic singularity. This algo-
rithm closely resembles the implementation of the + reg-
ularization in the evolution of PDFs and GPDs. We note
that the first integral (in the ERBL region) is strictly real.
The second and third terms contain both real and imag-
inary parts (which are generated in the DGLAP region).
Explicit expressions for the real and imaginary parts of
the DVCS amplitudes are given in Sec.(II) of [24]. They
involve integrals over the coefficient functions which may
be calculated explicitly and are given in Appendix B of
[24]. The real and imaginary parts of the unpolarized and
polarized DVCS amplitudes were computed using a FOR-
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Fig. 4. The Q2-dependence of the real (solid line) and imag-
inary (dotted line) parts of the unpolarized gluon DVCS am-
plitude, which starts at NLO, for two representative values of
ζ

TRAN code based on numerical integration routines. We
implemented the exact solution to the RNG equation for
αs in LO or NLO in our calculation, as appropriate, to be
consistent throughout our analysis.

4.2 Numerical results: unpolarized case

In this subsection we illustrate the Q2- and ζ-dependence,
as well as the size, of the real and imaginary parts of the
unpolarized DVCS amplitudes for the new input distribu-
tions (MRST99, CTEQ5M), calculated at LO and NLO
accuracy. Figure 3 shows the Q2-dependence of the real
and imaginary parts of the quark singlet contribution, at
LO and NLO, for two values of ζ = 0.1, 0.0001, representa-
tive of HERMES and HERA kinematics, respectively. Cor-
respondingly, Fig. 4 shows the gluon contributions, which
start at NLO. Note the strong Q2-dependence in NLO of
the imaginary part of the quark singlet and gluon ampli-
tude at small ζ. This might raise concerns about the con-
vergence of the perturbative expansion, especially when
comparing NLO with LO in the quark singlet, where NLO
grows much stronger with Q2 than LO. This is due to the
same type of logarithmic divergences as X → ζ in both
the evolution kernels and NLO coefficient functions. These
divergences enhance the region around ζ, which is impor-
tant for the value of the imaginary part [23], more quickly
in Q2 than αs drops as Q2 increases. However, the quark
singlet amplitude itself is not an observable quantity at
NLO but rather the sum of quark singlet and gluon. When
comparing the physical amplitudes at LO and NLO, the
relative NLO corrections decrease as Q2 increases, as they
indeed should [23].

The above figures are complemented by Figs. 5 and 6,
which show the ζ-dependence at fixedQ2 for the quark sin-
glet and gluon contributions, respectively. Again we would
like to point out the remarkable power-like behavior of the
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Fig. 5. The real and imaginary parts of the unpolarized quark
singlet DVCS amplitude, as a function of ζ. The solid (dashed)
curve is the real part in LO (NLO) and the dotted (dashed-
dotted) curve is the imaginary part in LO (NLO). To be able
to plot the NLO real part of the quark singlet amplitude in a
viewable manner, we removed the first point for CTEQ5M in
the upper left plot (since it was negative and thus not easily
handled in a log-log plot) and shifted the NLO curve of the
real part in the upper right plot upward by an amount of O(1),
again to avoid negative numbers

unpolarized amplitudes in ζ for fixed Q2 already remarked
upon and explained in [24] (with the exception of the NLO
real parts of the quark singlet amplitude for CTEQ5M for
the Q2 values plotted due to a somewhat strange combi-
nation of small quark input and comparatively large gluon
input. At higher Q2, the CTEQ5M distribution also dis-
plays the characteristic power-like behavior in ζ).

4.3 Specification of t-dependence
and helicity flip amplitudes

In this subsection we specify the t-dependence of the vari-
ous unpolarized/polarized helicity non-flip/flip DVCS am-
plitudes, H1, H̃1, E1, Ẽ1, for each parton species a = S(a =
u, d, s), g. These are required in (5, 6, 7) to fully specify
TDVCS (our choices follow those of [31] closely)20. The var-
ious form factors are specified as follows:

Ha
1(ζ,Q

2, t) = F a
1 (t)T a,V (ζ,Q2) ,

H̃a
1(ζ,Q

2, t) = Ga
1(t)T a,A(ζ,Q2) ,

Ea1 (ζ,Q2, t) = F a
2 (t)T a,VE1 (ζ,Q2) ,

Ẽa1 (ζ,Q2, t) = Ga
2(t)T a,AẼ1 (ζ,Q2) , (45)

20 In fact the GPDs themselves may already be considered to
have a given helicity specification. The assumption of a factor-
ized t-dependence for the GPDs allows the specification of the
t-dependence to be moved to the amplitude level
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Fig. 6. The real and imaginary parts of the unpolarized gluon
DVCS amplitude as functions of ζ, for fixed Q2. The solid curve
is the modulus of the real part (which is actually negative) and
the dotted curve is the modulus of the imaginary part of the
gluon amplitude, which is also negative!

where, in the helicity flip case on the second line, we have
introduced additional subscripts, E1, Ẽ1, on the right hand
side to distinguish this case from the helicity non-flip one
considered explicitly above. For the up and down quark
flavors we exploit the fact that proton and neutron form
an iso-spin doublet to arrive at:

2Fu
i (t) = 2F p

i (t) + Fn
i (t),

2F d
i (t) = F p

i (t) + 2Fn
i (t) , for i = 1, 2 , (46)

corresponding to the Dirac and Pauli form factors, respec-
tively (see (12, 13)). For the helicity non-flip polarized case
we choose [31]:

Gu,d
1 (t) =

(
1− t

m2
A

)−2

,

Gs,g
1 (t) =

(
1− t

m2
A

)−3

, (47)

where mA = 0.9 GeV [33]. The strange quark and the
gluon sea-like form factors were chosen in [31] using the
counting rules for elastic form factors which give 1/t3, for
large t. Hence, for the unpolarized case the electric and
magnetic form factors were chosen to be

Gs,g
E (t) =

Gs,g
M (t)

1 + κs,g
=

(
1− t

m2
V

)−3

, (48)

where we further assume κs,g = 0. This gives (cf. (12))

F s,g
1 (t) = Gs,g

E (t) =
(
1− t

m2
V

)−3

, F s,g
2 (t) = 0 , (49)
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with mV = 0.84 GeV.
For the helicity-flip case, we still have to specify the

polarized and unpolarized GPDs. Unfortunately there are
no inclusive analogs to guide us. However, we do know that
the unpolarized helicity flip GPD contains a D-term with
a relative minus sign as compared to the helicity non-flip
GPD, such that when added they cancel21. In contrast
to [31] we set the GPD equal to this D-term, which is
non-zero only in the ERBL region22. We then evolve this
distribution in Q2 and use it as an input to calculate T a,VE1
for use in (45), with the F a

2 (t) for various a specified in
(46, 49).

For the polarized helicity flip amplitude, TẼ , it was
observed that, in a similar fashion to the effective pseudo
scalar form factors in β-decay [33], one can approximate it
at small t by the pion pole (see for example [40]). Thus we
chose the corresponding GPD to only contain the asymp-
totic pion distribution amplitude given by

φπ(X/ζ) =
8
3
2− ζ

ζ

X

ζ

(
1− X

ζ

)
, (50)

in the ERBL region (and zero for X > ζ). Since we use
the asymptotic form we do not evolve the GPD and use
it directly in the computation of the DVCS amplitude,
T a,AẼ1 (ζ,Q2). The t-dependence is given by the pion pole
and thus we find

Ẽa1 (ζ,Q2, t) = Ga
2(t) T a,AẼ1 (ζ,Q2) (51)

=
4g(3)

A M2

m2
π − t

T a,AẼ1 (ζ,Q2) , for a = u, d ,

where g(3)
A = 1.267,M is the nucleon mass and T a,AẼ1 = φπ,

for all Q2. For the s-quark and the gluon we set Ẽ1 to
zero. This completes the specification of the t-dependence
of DVCS amplitudes, which are then used to compute the
various DVCS observables defined in Sect. 2.

We close this section with a few comments. We note
that E1, Ẽ1 only have real parts since the GPD is zero for
X > ζ. Furthermore, in the asymptotic limit Q2 → ∞
for finite ζ, when all the partons have accumulated in the
ERBL region, all amplitudes have zero imaginary part and
a real part which is given by an asymptotic distribution
amplitude in the ERBL region, thus the overall amplitude,
and hence the appropriately scaled triple differential cross
section, remain non-zero, in contrast to inclusive DIS.

21 This has to be the case since the n-th. moment in X of the
sum is a polynomial of degree n-1 in ζ, whereas the n-th. mo-
ment of the non-flip and flip GPDs separately are polynomials
of degree n. The highest power of the polynomial in each case
is generated by the D-term and thus they must cancel
22 Strictly speaking this violates the polynomiality condition
since the helicity flip GPD is multiplied by the Pauli form fac-
tor rather than the Dirac form factor. However since the helic-
ity flip term is numerically insignificant for DVCS observables
this model is sufficient for phenomenological purposes
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5 LO and NLO results for DVCS observables

In this section we present results for the triple differen-
tial cross section and for various asymmetries (AAA, SSA,
CA, UPLT, CADSFL) defined in Sect. 2.2, in kinematics
appropriate for the H1, ZEUS and HERMES experiments.
We show the results as functions of t (for fixed ζ,Q2), of ζ
(for fixed t, Q2) and of Q2 (for fixed t, ζ) using the various
input distributions defined in Sect. 3.2. For our predic-
tions in HERA kinematics we assume an e+P scattering
with a proton energy of 920 GeV and a positron energy
of 27.5 GeV (except of course for the charge asymmetries,
which also use an electron probe of 27.5 GeV).

5.1 The triple differential cross section

In Fig. 7 and Fig. 8 we show the triple differential cross
section of (17), as a function of t at fixed ζ and Q2, for
our four input distributions. We note that at the common
point Q2 = 4 GeV2, GRV98, MRSA’ and MRST99 are
in close agreement, for small ζ = x. In general CTEQ5M
and MRST99 experience only moderate changes in going
from LO to NLO.

At small ζ = x, for GRV98 and MRSA’ input distri-
butions, the NLO corrections are much larger. As Q2 in-
creases, at fixed ζ, the spread of the predictions is seen to
decrease. This is partly due to the evolution washing out
the differences between the various input distributions,
and partly due to an increased significance of the BH pro-
cess.

In Figs. 9, 10, we employ logarithmic scales for HERA
kinematics (x < 10−2) to illustrate the ζ-behavior for fixed
Q2 and t. It is interesting to note that we find the same
type of power law behavior, ζn, for the triple differential
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cross section, which also includes the BH process, as we
found previously for the unpolarized DVCS amplitudes
(see Figs. 5–6). Note that the kink for Q2 = 9 GeV2 is
due to going from a BH dominated region at x = 0.0001
(y > 0.8) to a region where DVCS dominates (x > 0.0005
and y < 0.2).

The fact that the GRV98 and MRSA’ input scale is
Q2

0 = 4 GeV2, implies that the available Q2-range at
small x is rather limited for these distributions. Hence, in
Fig. 11 we show only the Q2-dependence of the MRST99
and CTEQ5M sets, which start at Q2

0 = 1 GeV2. For
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smaller Q2, where DVCS dominates BH, the cross section
falls quickly with Q2 and one is sensitive to the details
of the choice of input distribution. As Q2 increases and
BH starts to dominate over DVCS, one observes that the
curves begin to converge and one loses sensitivity to the
details of the input GPD.

We would like to point out that at large x all of the dis-
tributions produce fairly similar results and that the NLO
corrections are tame. This is expected because each of the
distributions have been strongly constrained by global fits
to high statistics data in this region and hence behave sim-
ilarly. Any observed differences may result in part from the
holistic nature of the GPDs, which requires a continuous
function for all X, both at the input scale and upon evo-
lution. The real part of the amplitude is sensitive to an in-
tegral over the ERBL region X < ζ so one may have some
residual sensitivity to the behavior at very small X � ζ,
particularly if this behavior is extreme. The imaginary
part is strongly influenced by the behavior atX = ζ which
in turn is constrained by a symmetry in the ERBL region.
This sensitivity is further enhanced at smaller ζ, where
the input PDFs are not yet so well constrained by direct
(mainly inclusive) measurements. Hence, we optimistically
speculate that a detailed measurement of the differential
cross section, at HERA, for relatively lowQ2 ≈ 1−4 GeV2,
could help to discriminate between different standard in-
put PDFs.

5.2 The single spin asymmetries (SSA,UPLT)

Having found a large spread of predictions for the triple
differential cross section for different input GPDs, we now
turn to two single spin asymmetries which are directly
sensitive to the imaginary part of DVCS amplitudes. Let
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us first discuss the SSA, defined in (20), which can be
measured using a polarized lepton probe on an unpolar-
ized target. At small x the numerator in (20) is directly
proportional to Im H1 (see the second term of (30) of
[31]).

In Figs. 12, 13 we illustrate the t-dependence at fixed ζ
and Q2, and note that the predictions range from as little
as 5% to as much as 30%. We note that in general the
t-dependence is rather flat for t > −0.1 GeV2, indicating
that, to a certain extent, the t-dependence cancels in the
ratio of (20). This means that an experimental measure-
ment of this asymmetry, even with a rather coarse binning
in t, would be able to distinguish between different input
scenarios, especially at larger Q2 values. At the common
scale of Q2 = 4 GeV2, the GRV98 and MRSA’ sets pro-
duce very similar numbers within LO and NLO, whereas
CTEQ5M and MRST99 are more different within LO and
NLO, at least at small x. The NLO to LO corrections are
generally speaking small to moderate (5− 30%).

Figures 14, 15 show that the SSA drops steeply in ζ =
x for fixed Q2 and t, suggesting that the HERA experi-
ments will only be able to measure the SSA in the small ζ
regime (ζ ∈ [10−3, 10−4]). We would also like to point out
that the differences for the different input sets become
so small, on the scale of the actual value of the SSA at
larger ζ in HERA kinematics, that only very high statis-
tics would be able to discriminate between them. Thus, for
HERA, only a small ζ measurement would gives a reason-
able discrimination between the various inputs. For HER-
MES kinematics, where for fixed ζ = x,Q2 one of course
probes a different y = Q2/xS value, the SSA again be-
comes sizeable. Unfortunately, in this high ζ = x regime,
the SSA is proportional to a linear combination of imag-
inary parts of H1, H̃1, E1 rather than just Im H1 as at
small ζ (see second term of (30) of [31]).

Finally, in Fig. 16 we plot the Q2-dependence for fixed
ζ = x and t. For small ζ we observe that the magnitude
of the SSA increases with Q2, for both distributions. At
large ζ, both MRST99 and CTEQ5M have very similar Q2

behavior and the NLO corrections are small. Note that at
small ζ the NLO corrections appear to grow in Q2 which
at first sight looks strange. This is due to the fact that the
BH process gains prominence relative to the DVCS pro-
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cess, so any differences between calculations of ImH1 for
the interference term in the numerator become enhanced.
However, the NLO corrections remain moderate between
15− 30%.

If one switches now to a longitudinally polarized pro-
ton target as available at HERMES, but not currently
planned for HERA, and an unpolarized lepton probe, one
can form the unpolarized single spin asymmetry UPLT
which is directly sensitive to the imaginary part of a com-
bination of DVCS amplitudes. Furthermore, for the small
ζ regime within HERA kinematics, we find on inspection
of the first term (proportional to Λ sinφ) of (31) of [31]
that the UPLT at small ζ is directly proportional to the
imaginary part of the polarized amplitude H̃1 and that
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the other amplitudes like the numerically large H1 are
suppressed by x. Hence, even though Im H̃1 is about a
factor of one thousand smaller than Im H at x = 10−4,
the suppression factor of x means that Im H1 constitutes
only a 10% correction. Hence the UPLT is mainly sensitive
to Im H̃1 at small x. Since this amplitude is numerically
small, we found the UPLT asymmetry itself to be very
small, at small x = ζ, and thus virtually impossible to
measure. Therefore, we do not show plots for HERA kine-
matics but rather only for HERMES kinematics.

2.25 3.25 4.25 5.25 6.25
Q

2
 in GeV

2

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

1.5 2.5 3.5
Q

2
 in GeV

2

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Single Spin Asymmetry

x = 0.0001
t = −0.25 GeV

2

t = −0.25 GeV
2

x = 0.1

Fig. 16. The SSA as a function of Q2, for fixed t and x = ζ.
The solid (dotted) curve is the CTEQ5M set in LO (NLO)
and the dashed (dashed-dotted) curve is the MRST99 set in
LO (NLO)

−0.5−0.4−0.3−0.2−0.1
t in GeV

2

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

−0.5−0.4−0.3−0.2−0.1
t in GeV

2

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Q
2
 = 4 GeV

2

x = 0.15

Q
2
 = 6.9 GeV

2

x = 0.15

The UPLT Asymmetry

Fig. 17. The UPLT as a function of t, for fixed x and Q2. The
solid (dotted) curve is the MRSA

′
set in LO (NLO) and the

dashed (dashed-dotted) curve is the GRV98 set in LO (NLO)

−0.5−0.4−0.3−0.2−0.1
t in GeV

2

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

−0.5−0.4−0.3−0.2−0.1
t in GeV

2

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

Q
2
 = 2.25 GeV

2

x = 0.15

Q
2
 = 4 GeV

2

x = 0.15

The UPLT Asymmetry

Fig. 18. The UPLT as a function of t, for fixed x and Q2. The
solid (dotted) curve is the CTEQ5M set in LO (NLO) and the
dashed (dashed-dotted) curve is the MRST99 set in LO (NLO)

In Figs. 17 and 18, we show the UPLT as a function
of t for fixed Q2 and ζ = x = 0.15, i.e. in HERMES
kinematics, where Im H and other amplitudes contribute
significantly. Hence, despite the fact that this asymme-
try should be measurable at HERMES, the results would
only be useful in the context of a program of asymme-
try measurements that would enable the individual DVCS
amplitudes to be isolated. Again a rather flat behavior is
observed in t. We observe that all sets agree well with one
another and their NLO corrections are small, in terms of
percentages. In Figs. 19, 20 we plot the UPLT as a func-
tion of ζ = x at fixed t, Q2. Note the good agreement of
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all sets in the Q2 = 4 GeV2 figures. This agreement does
not bode well for the usefulness of the UPLT to discrimi-
nate between different input models. The NLO effects are
found to be generally small. Finally, in Fig. 21 we show
that the Q2-behavior of the UPLT asymmetry, is rather
complicated (for the same reasons as in the case of the
SSA in HERMES kinematics). Note the close agreement
of all sets for the Q2 > 4 GeV2 behavior and the smallness
of the NLO corrections.
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(dotted) curve is the MRSA

′
set in LO (NLO) and the dashed

(dashed-dotted) curve is the GRV98 set in LO (NLO)

5.3 The azimuthal angle asymmetry (AAA)

We now discuss the (unpolarized) azimuthal angle asym-
metry, defined in (19), which directly probes the real part
of DVCS amplitudes and only Re H1 at small ζ = x where
it dominates the other amplitudes (cf. the term propor-
tional to cosφ in (30) of [31]). Again we would like to
point out that subtracting the BH contribution is neces-
sary since it does not cancel in the asymmetry due to the
φ-dependence of the propagators P1 and P2.

In general, Figs. 22, 23 reveal a rather flat behavior of
the AAA in t, for fixed ζ,Q2. We note that the spread of
predictions coming from different inputs is rather large,
indicating a strong sensitivity of the AAA to the input
distributions and to the order in perturbation theory. The
NLO corrections are very large, simply because the gluon
enters at NLO for the first time, with a relative minus sign
compared to the quarks in the real parts of the ampli-
tudes. The wide spread in results indicates that the AAA
is a highly sensitive discriminator between different input
models, even those which have, up until now, agreed very
well with one another. Hence, measuring the AAA both
at HERA and HERMES with high precision is impera-
tive for constraining the GPDs via a global fit. Note also
that this strong sensitivity to the details of the shape and
size of the GPD both in the ERBL and DGLAP region,
as anticipated by the results in [23,24], indicates that an
extraction of the GPDs with reasonable precision may be
possible.

Figures 24 and 25 illustrate the strong decrease of the
AAA as ζ increases within HERA kinematics (i.e. small ζ),
for fixed Q2, t. However, as expected from dispersion rela-
tions, this behavior at small ζ of AAA, which is sensitive
to ReH1, is naturally not as steep as that of SSA, which
is sensitive to ImH1. Note again the kink at Q2 = 9 GeV2

when going from a BH dominated region to a DVCS dom-
inated one, i.e. from high to low y.
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The ζ-dependence of the AAA in the valence region
probed at HERMES (where it has already measured the
SSA), shows very large NLO effects, consistent within all
sets, which make the AAA large and thus measurable at
HERMES. The large overall size and spread of predictions
is encouraging for measurements of the AAA at large x
since even here the discriminating power between GPD
models is very good.

Finally we show the Q2-dependence of the AAA in
Fig. 26 (again only for MRST99 and CTEQ5M, due to
their lower input scale). For small ζ = x we see a fairly
flat behavior of the AAA with Q2 with the NLO to LO
changes staying fairly constant in Q2. At large ζ = x, the
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predictions for the two sets quickly approach one another
in both LO and NLO as Q2 increases. Also the NLO to
LO change decreases as Q2 increases in line with the ar-
gument that BH starts dominating at large Q2 due to the
associated increase in y.

5.4 The charge asymmetries (CA,CADSFL)

Other asymmetries which measure the real part of DVCS
amplitudes are the charge and charge double spin flip
asymmetries (see (23, 24)). These asymmetries require the
measurement of DVCS with both the positron and the
electron and, in the case of the CADSFL, a longitudinally
polarized probe and target at the same time. Thus they
are more difficult to measure than the AAA or other ob-
servables. The CA isolates the same combination of real
parts of DVCS amplitudes as the AAA (i.e. the first term
in (30) of [31], which is proportional to cosφ), and would
therefore serve as a useful complementary measurement.

The CADSFL isolates the combination of real parts of
DVCS amplitudes given in the second term of (31) of [31].
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The UPLT asymmetry isolates the imaginary part of the
same linear combination. Thus a combined measurement
of both CADSFL and UPLT at small x reveals informa-
tion about the real and imaginary parts of the polarized
helicity non-flip DVCS amplitude H̃1.

We discuss the CA first. Figures 27–31 reveal that the
CA is very similar to the AAA in the BH dominated re-
gion, and is within 20% of it in the DVCS dominated re-
gion for both LO and NLO. It can be easily seen that the
t, x and Q2 behavior is very similar for both asymmetries.
This behavior can be understood quite easily: in contrast
to the AAA case, for CA the interference term drops out
in the normalization in (23) due to the sign change of the
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interference term in going from a positron to an electron
probe. The numerator is the same for both asymmetries.
Hence, deviations between the AAA and the CA results
show directly the influence of the interference term relative
to the BH and DVCS contributions. The larger the devi-
ation the more important the interference term. Hence, a
precise measurement of the CA and the AAA will serve as
a very good consistency check of the experimental analy-
sis, since strong deviations between the CA and AAA are
not expected. One caveat here is the possible importance
of higher twist contributions in the interference term.
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Moving now to a longitudinally polarized probe and
target, we will study the charge asymmetry in a double
spin flip experiment, the CADSFL.

For HERA kinematics the CADSFL turns out to be
too small to be measured, i.e. consistent with zero for any
practical purposes, and thus we will not show plots for
HERA kinematics. For HERMES kinematics, the asym-
metry is of the order of a few percent, so one might hope
to be able to measure it. In Figs. 32 and 33 we show the t-
dependence for fixed ζ = x and Q2, which turns out to be
rather steep. In Figs. 34 and 35 we show the ζ-dependence
for fixed t, Q2. They indicate that although in percentage
terms the spread of predictions is large the overall size of
the CADSFL (only a few percent) would seem to indicate
that exploiting this spread of predictions is impractical.
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Finally we show the Q2-behavior of CADSFL in
Fig. 36, for fixed t, ζ. We see quite a moderate to large
difference in going from LO to NLO. Note the sign dif-
ference between the GRV98 and MRSA’ sets on the one
hand and the CTEQ5M and MRST99 sets on the other
hand. This gives some hope to use this asymmetry as a
discriminator between different model inputs. Generally
speaking, due to its overall smallness, it is not as promis-
ing a candidate as the CA asymmetry as a good DVCS
observable, even though it is directly sensitive to the real
part of a polarized amplitude at small ζ. This concludes
our presentation of DVCS observables in LO and NLO.

5.5 Summary of optimal DVCS observables

We summarise the results of the previous subsections as
follows:

– The triple differential cross section is quite a good dis-
criminator between different GPD models, particularly
at Q2 values close to the input scale (at higher Q2 the
BH process dominates). We predict a steep rise with
decreasing ζ reflecting the underlying powerlike behav-
ior in ζ of the DVCS amplitudes.

– The SSA is quite sizable and well behaved in NLO for
all the input GPDs concerned, which makes it a very
good candidate to be measured both at HERA and
HERMES. For small ζ (HERA kinematics) we predict



A. Freund, M. McDermott: A detailed next-to-leading order QCD analysis 671

a strong increase in magnitude as ζ decreases (a fea-
ture shared by AAA and CA) and good discriminating
power between input models, especially at larger Q2.

– The AAA and CA seem to be very good candidates
for discriminating between different input GPDs sim-
ply because they measure the real part of DVCS am-
plitudes which are very sensitive to the underlying de-
tails of the GPDs, in Radyushkin’s ansatz, especially at
NLO where the gluon enters with a relative minus sign
for the real part of its amplitude. Practical measure-
ments for both asymmetries appear feasible for both
HERMES and HERA kinematics.

– The measurement of UPLT (CADSFL) appears to be
practical only at large ζ in HERMES kinematics, where
it tests a linear combination of imaginary (real) parts
of several DVCS amplitudes. Therefore these measure-
ments have very limited discriminating power between
model GPDs.

In summary it seems that four out of six observables
are large enough to make measurements at HERA and
HERMES feasible, and which have good discriminating
power between input scenarios. Thus the prospects of un-
raveling the details of the DVCS process experimentally
are in principle very good.

6 Comparison with experiment
and other calculations

In this section we compare our LO and NLO results for
each of our input sets with the available published experi-
mental data from H1 and HERMES. The ZEUS collabora-
tion announced the first measurement of DVCS at HERA
[9] (see also [13]), but has yet to publish a cross section.

H1 recently published their data [10] on the measured
DVCS cross section on both the lepton level and the pho-
ton level. They use the equivalent photon approach, which
relates the pure DVCS cross section on the lepton level
(with the interference neglected23 and the pure BH term
subtracted) to the virtual-photon proton cross section:

d2σ(ep→ epγ)
dydQ2 = Γ σDV CS(γ∗p→ γp) where

Γ =
αe.m.(1 + (1− y)2)

2πyQ2 . (52)

By integrating (17) over t, φ, and changing variables from
xbj to y, we can establish the formula for the photon-level
cross section in terms of our amplitudes as

σDV CS(γ∗p→ γp) =
α2x2π

Q4B |TDV CS |
2|t=0, (53)

where B stems from the t-integration and, within our
model for the t-dependence, B ≈ 6.5 GeV−2 (with a sur-
prisingly small spread of about 1 GeV−2!). We observed

23 This may be ignored at small y, typical of HERA kinemat-
ics, and after integration over φ
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Fig. 36. The CADSFL in Q2 for fixed t and x = ζ. In the
left figure, the solid (dotted) curve is the CTEQ5M set in LO
(NLO) and the dashed (dashed-dotted) curve is the MRST99
set in LO (NLO), and in the right figure, the solid (dotted)
curve is the MRSA’ set in LO (NLO) and the dashed (dashed-
dotted) curve is the GRV98 set in LO (NLO)

that for the kinematical region of the H1 data which is
limited to small x, i.e. to small ζ, we could write∫ ttmin

−∞
dt |TDV CS |2 ≈ 1

B |TDV CS |
2|t=0 (54)

as if we had assumed a global exponential dependence,
eBt, as was used by H1 in their comparison to other [8,46]
calculations (dropping all amplitudes except H1). On nu-
merical inspection we found that indeed H1 clearly domi-
nates all the other amplitudes for HERA kinematics.
Therefore, in comparing to the data, we can safely ne-
glect all other amplitudes (i.e. polarised and helicity-flip)
in the DVCS square term.

The same assumption was made in previous LO QCD
[8] and two-component dipole model [46,47] calculations,
which both reproduce the H1 data quite well. Since ours
is a QCD calculation we point out the differences and
similarities with [8]. The latter was based on a LO in-
put (CTEQ3L) with the assumption that the GPDs are
equal to the PDFs at the input scale. The imaginary part
of the unpolarized helicity non-flip amplitude was then
computed using the aligned jet model and the imaginary
part, rather than the GPD, was then evolved to higher
Q2. This is equivalent to what we did at LO24 since the
imaginary part of the DVCS amplitude is simply π times
the GPD at ζ = xbj , legitimising the approach in [8].
The DVCS triple differential cross section, at small x,
was then computed by comparing the imaginary part of
DVCS to DIS and thus introducing the structure function
F2 through the optical theorem. In order to reconstruct
the real part of the DVCS amplitude a dispersion rela-
tion approach was used which exploited the slope of F2
in ln(1/x) at small x (which was extracted from data to
give η = ReADIS/ImADIS) together with the compara-
tive factor R = ImADVCS/ImADIS. The specification was
completed with the additional assumption of a global t-
dependence, eBt. In contrast to [8], we computed both

24 Note however that our LO calculation is based on NLO
input PDFs, and a different ansatz for the GPDs, so we don’t
necessarily expect the results to agree closely
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in quadrature

parts of the DVCS amplitudes directly and used them in
the unapproximated expressions for the DVCS triple dif-
ferential cross section, which also contains the polarized
as well as helicity flip amplitudes (however these can be
safely neglected in the cross section at small ζ). Further-
more, we assumed a dipole type t-dependence which is
close to the exponential behavior at small ζ and t, as well
as being correct at larger t (and small ζ).

In Fig. 37 we plot σDV CS(γ∗p) at Q2 = 4.5 GeV2 in
W (this is of course similar to a plot in 1/x = W 2/Q2)
for GRV and MRST input models at LO and NLO. Also
shown is the H1 data, for which they quote < Q2 >=
4.5 GeV2, with systematic and statistical error bars added
in quadrature. In Fig. 38, we plot σDV CS(γ∗p) in Q2 for
fixedW = 75 GeV. The most obvious observation to make
is that all of the the curves lie well above the data. How-
ever they do have the correct shapes (rising with W and
falling rapidly with Q2).

In order to understand this discrepancy we re-exam-
ined Radyushkin’s input model in detail. For the unpo-
larized gluon GPD in [23] we found a rather moderate
enhancement of about 20% of the GPD relative to the
forward case at the point X = ζ. However, for the quark
singlet, in which q rather than xq is used in the double
distributions, we found this enhancement to be as large
as a factor of four! Such a large enhancement stems from
the fact that the quark singlet distributions from the cho-
sen input GPDs are very singular in the small x region
(q(x) ∝ x−1−λ), and therefore lead to an integrable sin-
gularity in the double distribution at x′ = 0 (the shape
function for the quark singlet is ∝ x for x → 0 and this
reduces the degree of the singularity to an integrable one).
This leads to a large enhancement close to X = ζ and a
strong and unsatisfactory sensitivity to the extrapolation
of the input PDFs to very small x, where they have not
yet been measured (cf. (35,36)). This is clearly a very un-
satisfactory behaviour from a physical point of view and
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Fig. 38. The photon level cross section σ(γ∗P → γP ) as
a function of Q2 at fixed W = 75 GeV, for GRV98 and
MRST99 at LO and NLO. Also shown are the recent H1 data,
at W = 75 GeV, with systematic and statistical errors added
in quadrature

thus we are led to conclude that Radyushkin’s input model
should be used only with non-singular inputs.

To illustrate the strong sensitivity of the results to the
particular choice of input GPD we make a very simple
change to the input model, namely we shift the argument
of the PDFs in (14) of [21] from x to x+ ζ. This (admit-
tedly rather ‘ad hoc’) modification, which we make purely
for the purpose of demonstration, preserves the symme-
tries in the ERBL region and the forward limit, but can be
expected to spoil the polynomiality properties, which are
then restored25 under evolution [45]. In making this modi-
fication we ensure that the PDFs are never sampled below
x = ζ (which removes the sensitivity to the very small x
region) and can be expected to reduce considerably the
enhancement of the GPDs at X = ζ. Figures 39 and 40
show the very dramatic effect on the cross section. The
theory curves for the modified ansatz now undershoot the
experimental data by about a factor of two and appear to
reproduce the shape inW and Q2 rather well. In summary
we claim that this illustrates that the H1 data are already
able to begin to constrain the input GPDs. It seems clear
that if one is to use Radyushkin’s ansatz at very small
ζ the input PDFs should be non-singular. Alternatively,
one must invent a new parameterization of the GPDs at
the input scale that retains the required features (correct
polynomiality and symmetry properties and faithful re-
production of the forward limit) without the problem of
a strong sensitivity to the very small x region and associ-

25 In [45], in which the evolution is performed using moments,
it is shown that expansion coefficients in an orthogonal basis
allow only even powers of ζ in the expansion, in line with the
symmetry properties of GPDs. Similarly, in our numerical so-
lution, which is carried out in x space rather than moment
space, the non-polynomial pieces will be killed by the kernels
under convolution (the kernels encode the GPD symmetries in
their structure)
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ated large enhancement of the GPDs relative to the PDFs
at the point X = ζ. This might be achieved by choosing a
non-singular double distribution at a very low input scale,
with the small X behavior generated by perturbative evo-
lution.

We now turn to the SSA as measured by the HERMES
collaboration [11]. They define the SSA, weighted with
sinφ, as follows:

SSA =
2
∫ 2π
0 dφ sinφ (dσ↑ − dσ↓)∫ 2π

0 (dσ↑ + dσ↓)
. (55)

They quote two values: SSA = −0.18 ± 0.05 ± 0.05 and
〈SSA〉 = −0.23±0.03±0.04. The first, which assumes that
their missing mass equals the proton mass, is quoted at the
following average values: <x>= 0.11, <Q2>= 2.5 GeV2

and < t >= −0.27 GeV2. The second (average) value is
the SSA integrated over the missing mass at the same
average values of x,Q2 and t. At this point in x,Q2, t

for the HERMES definition we find SSA = −0.365 for
CTEQ5M and SSA = −0.35 for MRST99.

Given the fact that the input models used do not de-
scribe the data at small ζ, and that we find the same
type of enhancement effect when comparing GPDs with
forward PDFs at both small and large ζ, the failure to
describe the HERMES data is not surprising. In fact one
needs higher statistics over a wide kinematic range in sev-
eral DVCS observables to be able to begin to tune the in-
put GPDs using a fitting method. Only then can one start
discriminating between different choices for the PDFs in
input models. Furthermore, for HERMES data one needs
to know the normalizations of numerator and the denom-
inator producing the measured asymmetry to help to con-
strain the normalization of the individual amplitudes (in
order to be able to make any sensible statements about a
comparison between theory and experiment).

In comparing with other calculations we show qualita-
tive agreement with [8,46,47] and quantitative agreement
with [31,44] wherever we used the same input distribu-
tions (MRSA’ and GS(A) only).

7 Conclusions

We have presented a detailed next-to-leading (NLO) QCD
analysis of deeply virtual Compton scattering (DVCS) ob-
servables. We quantified the NLO corrections and estab-
lished which observables have the best prospects to be
measured accurately at HERA and HERMES (the triple
differential cross section and the azimuthal angle (AAA),
single spin (SSA) and charge (CA) asymmetries). We have
demonstrated that such measurements would have good
discriminating power between different scenarios for the
generalized parton distributions (GPDs), by examining
four cases. It turns out that AAA and CA, which test
the real part of unpolarized DVCS amplitude at small x
are the most sensitive to the choice of GPD model.

We performed a comparison with presently available
DVCS data and showed that within Radyushkin’s ansatz
for the GPDs, all of the models we examined overshoot the
H1 data. This is due to their singular nature of the quark
singlet at small x which leads to a strong sensitivity to the
PDFs in the extremely small x region, where they have
not yet been measured. We illustrated this strong sensi-
tivity by artificially shifting the argument of the PDFs
by ζ, which led to a large reduction in the theoretical
predictions for the photon-level cross section (which then
undershoot the data). This illustrates an urgent need for
improved input models, which do not rely on a singular
double distribution and also for more, high precision data
to help constrain them.
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